

# CAN1630G SPDT Switch Datasheet

Rev 1.2 April, 2019

This datasheet is intended for customer's evaluation and application of the CAN1630G device. Under no circumstances it should be circulated outside the customer's company. This datasheet is preliminary and CanaanTek reserves the right to modify and to improve the data.





## **PRODUCT DESCRIPTION**

CAN1630G is a single pole, dual-throw (SPDT) LTE MMMB transmit/receive switch. Switching is controlled by an integrated GPIO interface with a single control pin. Depending on the logic voltage level applied to the logic control pin, the antenna port is connected to one of the switched RF ports (RF1 or RF2) through a low insertion loss path, while the path between the antenna port and the other RF port is in a high isolation high impedance state.

No external DC blocking capacitors are required as

lon5/063/100/290/avol/(40074)3755.86 Tm0 g0 G[(2)]TJET EMC /Span & Rlen-

The CAN1630G is manufactured using a

state-of-the-art Silicon-On-Insulator (SOI) process and

is provided in a compact 1.1 x 0.7 x 0.45 mm, 6-pin

surface mount Dual Flat No-Lead (DFN) package.

A faidetional block diagram is solver transm ac7 44/Lang (en-US)>> BDC q 12/Lang (efy)18()- T08871 0 nd iSapan × BD



## Table 1. CAN1630G Signal Descriptions

| Pin# | Name | Description     | Pin# | Name              | Description         |
|------|------|-----------------|------|-------------------|---------------------|
| 1    | RF2  | RF I/O, throw 2 | 4    | VDD               | Voltage supply      |
| 2    | GND  | Ground          | 5    | ANT               | RF I/O, switch pole |
| 3    | RF1  | RF I/O, throw 1 | 6    | VCTL <sup>1</sup> | Switch control line |

Note 1: If VDD is powered down, VCTL should be low level.

## **Electrical and Mechanical Specifications**

The absolute maximum ratings of the CAN1630G are provided in Table 2.

Electrical specifications are provided in Table 3.

The state of the CAN1630G is determined by the logic provided in Table 4.

### Table 2. CAN1630G Absolute Maximum Ratings

| Parameter               | Symbol          | Minimum | Maximum | Unit      |
|-------------------------|-----------------|---------|---------|-----------|
| Supply voltage          | VDD             | 1.6     | 5.0     | V         |
| Digital control voltage | VCTL            | 0.0     | 3.3     | V         |
| RF input power          | PIN             |         | 35      | dBm       |
| Supply ripple           | V <sub>PP</sub> |         | 20      | $mV_{PP}$ |
| Operating temperature   | T <sub>OP</sub> | -40     | +85     | °C        |
| Storage temperature     | Tstg            | -55     | +150    | °C        |

Note: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to

debiee2with only one parameter set at the limit and all other parameters set at or 1 0 0f3/F2 9.96 Tf1 0 0 1 dr369.850.45 69.384



## Table 3. CAN1630G Electrical Specifications (Note 1)

## $(V_{\text{DD}} = 2.85 \text{V}, \, T_{\text{OP}} = +27 \,\, ^{\circ}\text{C}, \, Characteristic \, Impedance \, [Z_{\text{O}}] = 50 \quad , \, Unless \, Otherwise \, Specified)$

| Parameter                  | Symbol | Test Condition                                                                                   | Min  | Typical | Max   | Units |  |
|----------------------------|--------|--------------------------------------------------------------------------------------------------|------|---------|-------|-------|--|
| DC Specifications          |        |                                                                                                  |      |         |       |       |  |
| Supply voltage             | VDD    |                                                                                                  | 1.60 | 2.85    | 4.5   | V     |  |
| Control voltage:           |        |                                                                                                  |      |         |       |       |  |
| Low                        | VCTL_L |                                                                                                  | 0    | 0       | 0.40  | V     |  |
| High                       | VCTL_H |                                                                                                  | 1.20 | 1.80    | VDD   | V     |  |
| Current on VCTL pin        | I_CTL  |                                                                                                  |      |         | 5     | μA    |  |
| Supply ourrept             | IDD    | VDD = 2.85 V,                                                                                    |      | 25      | 60    |       |  |
| Supply current             |        | VCTL = VCTL_H                                                                                    |      |         | 60    | μΑ    |  |
|                            |        | Measured from VCTL_HIGH minimum or                                                               |      |         |       |       |  |
| PE path switching time     | tSW    | VCTL_LOW                                                                                         |      | 1       | 2     |       |  |
| KF path switching time     |        | maximum to RF output power ± 1 dB (Note 2),                                                      |      | I       | 5     | μο    |  |
|                            |        | $PIN = +26 \text{ dBm},  \text{T}_{OP} = -10 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}.$ |      |         |       |       |  |
| RF Specifications          |        |                                                                                                  |      |         |       |       |  |
| Insertion loss (PE1 or PE2 | IL     | 0.1 to 1.0 GHz                                                                                   |      | 0.30    | 0.50  | dB    |  |
| to ANT nin)                |        | 1.0 to 2.2 GHz                                                                                   |      | 0.35    | 0.55  | dB    |  |
|                            |        | 2.2 to 2.7 GHz                                                                                   |      | 0.37    | 0.60  | dB    |  |
| Isolation from any active  | lso    | 0.1 to 1.0 GHz                                                                                   | 30   | 35      |       | dB    |  |
| nort to any other port     |        | 1.0 to 2.2 GHz                                                                                   | 28   | 33      |       | dB    |  |
| port to any other port     |        | 2.2 to 2.7 GHz                                                                                   | 20   | 25      |       | dB    |  |
| 0.1 dB Input Compression   | P0.1dB | VDD=2.85V                                                                                        |      | 34.5    |       | dBm   |  |
| Point                      |        |                                                                                                  |      |         |       |       |  |
| Voltage Standing Wave      | VSWR   | Referenced to 50 ,0.1 to 2.7 GHz                                                                 |      | 1 0.1   | 1 5.1 |       |  |
| Ratio, all ports           |        |                                                                                                  |      | 1.2.1   | 1.5.1 | -     |  |
| Hermonia DE1 or DE2 to     | Harm   | fo = 0.1 to 2.7 GHz,                                                                             |      |         |       |       |  |
|                            |        | PIN = +26 dBm,                                                                                   |      | -65     | -55   | dBm   |  |
|                            |        | VSWR = 2.5:1                                                                                     |      |         |       |       |  |

Note 1:







## Table 4. CAN1630G Truth Table

| State | Active Path | VCTL (Pin 6) |
|-------|-------------|--------------|
| 0     |             |              |





#### **Timing Requirements**

It is important that the user adheres to the correct timing sequences in order to avoid leakage power consumption.

 VDD and VCTL cannot be powered on and off independently from one another. During power on sequence, the user must power up VDD first, then power up VCTL. During power off sequence, the user must power off VCTL first, then power off VDD. In the state of VDD=OFF(0 V) and VCTL=ON(1.8V), it may cause leakage power consumption as ESD protection circuit inside the switch.



Figure 4. Allowable Power On Sequences

2. VDD and VCTL must be on for a minimum of 15us before applying RF power.



Figure 5. RF Power-Up Detail





#### Switch Model for RF ON/OFF state

Please note that Switch model for RF1 ON and RF2 ON as the following.

Refer to the Figure 6, when RF1 ON, RF1 port and ANT port will be connected directly in short circuit, while RF2 port will be connected to the Ground through internal switch, so it should avoid DC level applied on RF2 port.

Refer to the Figure 7, it's vise versa for RF2 ON.



Figure 6. Switch model with RF1 ON









## Package Dimensions

Package dimensions for the CAN1630G are shown in Figure 5.



|        | MILLMETER |      |      |
|--------|-----------|------|------|
| SYMBOL | MIN       | NOR  | MAX  |
| А      | 0.41      | 0.45 | 0.50 |
| A1     |           |      |      |

Figure 8. CAN1630G Package Dimensions







## PCB Metal, Solder, and Stencil Patterns





### Package and Handling Information

Instructions on the shipping container label regarding exposure to moisture after the container seal is broken must be followed. Otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly.

THE CAN1630G is rated to Moisture Sensitivity Level 1 (MSL1) at 260 °C. It can be used for lead or lead-free soldering.

Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. Production quantities of this product are shipped in a standard tape and reel format.





## **Revision History**

| Revision                                                                     | Comments                                    |  |  |
|------------------------------------------------------------------------------|---------------------------------------------|--|--|
| Rev1.0                                                                       | First Draft                                 |  |  |
| Rev 1.1                                                                      | Add PCB Metal, Solder, and Stencil Patterns |  |  |
| Rev 1.2 Add timing requirement, RF ON/OFF model description and Typo correct |                                             |  |  |
|                                                                              |                                             |  |  |
|                                                                              |                                             |  |  |
|                                                                              |                                             |  |  |
|                                                                              |                                             |  |  |
|                                                                              |                                             |  |  |